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FERMION DYNAMICAL SYMMETRY AND THE NUCLEAR SHELL MODEL

JOSEPH N. GINOCCHIO

Theoretical Division, Los Alaros National Laboratory
Los Alsmos, New Mexico 87545 U.S.A.

1. INTRODUCTION

The interacting " 9son mode1!’ (IBM) has veen very successful in giving a
unified and simple description of the spectroscopic properties of a wide
range of nuclei, from vibratiopmal through rotational o'.clei. The three basic
sssurptions of the model are that 1) the - -lence nucleons move about a doubly
closed core, 2) the collective low-lying states are compored primarily of
coherent pai.s of neutrons and psirs of protons coupled to angular moirentum
zero and two and }) these coherent pairs are approximated as bosons.

In this review we shall show how it is possible to have fermion Hamii-
tonians which have a class of collective eigenstates composed entirely of
wonopole and quadrupole pairs of ferlionl."’) Hence there models satisfy
the assumptions 1) and 2) above but no bcson approximation need b~ made!
Thus the Pauli principle is kept in tact.

Furthermore the fermion shell model states excluded in the IBM can b
classified by the mumber of fermion pairs which are nct coberent monopole or
quadrupole pairs. Hence the mixing of these states into the low-lying
spectriwm can be calculated in & systematic and tractable manner. Thus we can
introduce featurep which are outside the IBM.

2. MONOPOLE AND QUADRUPOLE PAIRING

Our goal is to construct fermion shell model Hamiltonians which have a
cless of eigenstates compeosed of monopole, J"-O*. pairs and quadrupole,
J"-2+, pairs only. The way to do this is to separat¢ the single-ouclaon
sngular momentum ] into a pseudo-orbital angular momstntum % end a pseudo-spin
1."’) We call these "pseudo" because k may not correspond to the real
orbital angular scmentum ~f the suell and the spin may be greater than §. An
example is the s-d shell whiclh of course has orbitsl angular momentum £=0,2
and spiu e=}. Howvever we can span these states with kel gnd iw3/2, After the
separation, the special subspace is defined by summing over the pseudo-angu-
lar momentum or spin thereby making those degrees of freedom inactive. Hence
this technique is s way of reducing the number of active degrees of freedom

in a ferwion shell model and separating the large fermion shell modal space



into .wo parts. Another way of looking at this separation is to think of it
as a generalization of pairing. In pairing the monopole pair is the only
special pair and the single-nucleon angular momenta in this pair are com-
pletely coupled to total angular mosentum zero. In the present model the
single-pucleon angular momentum is split into two parts. HMost of the ringle-
nucleon angular momentum is coupled to zer. .n the special pairs, but a small
part of it is not.

To be more explicit we define a nucleon creation operator as IT(ki)jl
which creates » pucleon in an orbit with single-aucleon sngular momentum j,
projrction m with pseudo-orbits) sngular momentum k and pseudo-spin i which

sre coupled to j,

P+1=1 . 2.1

A pair of nucleons is then a lipear combination of orbitals coupled in k-i
coupling to a tutal peeudo-orbital angular momentun K, pseudo-spin I, with

these then coupled to total angul-r mowentum J znd projection M,

t K13, .t 1, (KI)J N

Pknm ® Iy Cu 0 Pra®ialy (2.2)
Because of antisymmetry, the sux of anguiar moments is evin:

K+1+J even . (2.3)

For our purposes we want to sepasrate nut one 3special angular somentus sero
pair and one special angulsr momentum two pair for which we can construct
shell model Hamiltonians which will have a class of eigenstates compor i oaly

of these paixrs. There are only two ways to do this:

(XDJ )
LY 8y 1 4,0 (211 (2.

In the first (second) case as long as the shell wodel Hamiltonian perserves
the pairing of the pseudo-spin (pseudo-orbital angular momentum) the patirs
with total pseudo-spin (pseudo-orbitsl angular momentum) maro will not mix
with other pairs. Further, since kal (1u§) and because of the sntisymmetii-
zation which leads to equation (2.3), only J"-o’,z’ are allowed for these
special pairs.



These two possibilities each lead tc Hamiltonisns with dynamical symme-
tries. The first option A leads to an Sp6 dynanical symmetry; the second
option B leads to an SOa dynarical lynmetry.‘) Each of theae models has
interesting features. The Sp6 model has an SU.3 subgroup which means that
axially symmetric rntational nuclei emerge from this model when the Hamil-
tonian has this SU3 as a dynsmical symmetry. On the other hand the 808 model
has an SO6 subgroup which gives y-unstable rotational ruclei vhen the Hasil-
tonisn bhas an SO6 dynamical symmetry. The IBM has both of these possibili-
ties.

However cof these two fermion models oaly the SO8 model has a one-to-one
correspondence between the space spanned by the fermion states composed of
the special monopole and quadrupole pairs of neutrons and protons and the
space spanned by the monopole and quadrupole bononl.’) In the Sp6 model many
of the most coilective states vanish due to the Pauli principle. For this
reason the SOB model has received the wmost attention to date, and we shall
discuss that acdel in sections 3-S5 in detail first. However many interesting
fertures appesr 1in the Sp6 model as well, &«nd there has been a revival of
iaterest of late in this lodel‘). We shall report recent developments in
this model in section 5.

3. The SO8 Model
The total number of valenze shell molel orbits in the 808 model cac be as

large as necessary and is given by

2Q=41 (2k+1) , 3.1)
k

and hence the total number of possible states for n valence nucleons can be
large, (22 ), where o is the number of valence nucleons. A wonderful aspect
about the GO8 20del is that all the ntates in th:.s spece can be classified
according to irreducible representations of the 5”8 .roup.’) In particular
the states in the space can be classified according to the pumber of nucleons
io the states, u, not coupled to the special monopole and quadrupole pair.
This quantum number is & genarsiization of the seniority quantum nulbcr')
wvhich just counts the number ot nucleons not couplel to s sonopole pair. The
states with um0 correspoud tuv the collective subspace composed only of mono-
pole and quadrupole pairs, snd Lan a one-to-one correspoudence with the IBM
space. The statcs with u®2 are “hose with only ous pair which is not s
sonopole o) quadrupole pair and so on. Thir festuru means that the study of
the coupling »f the collectire monopsle and quadrupcle space to the other
states left ot of vae IBM spa-e can be siudied in a syntematic way.



For odd nuclei u will be oda. The state u=l correspond to the states of
the interacting boson-fermion nodels) in which an odd fermion is coupled to
the even-even ctore deacribed by the IBM. the allowed quantum numbers of u=l
in the 50, msodel have been worked out.’)

The monopole pair creation operator, ST, and quadrupole pair creation

operator, D:. $¥=2,1,0,-1,-2, ure given by applying (2.2) and (2.5),

st = z (2k+1)Y [.k3 k3]3°°)° (3.22)
2 2

of o \ (02)2

) z (2k+1) (.llg kg]p (3.2b)

These pair -reation operators tnd their hermitian conjugates, plus the multi-

pole operatcrs with total pseudo-orbitsl angular momentum rank equal to zero,

K 21 et !, 59007 m01,2,3 (3.2¢)
H k k3 “K3’w

Nl
[ %)

are the gene-ator: of the SOB group.’) In particular, the pseulo-apin gener-

ator is

. (1) )
Ip J5 Rp . (3.24)

In addition to these op rators, the multipole operators

7(t) o ~ (v,0)r. .
p. l.k3 kj ] R odd (3_3)
2
commute with ST DT R(r) and genevate an SO -}
] ] ' . (2k+)) Bl‘ Llp

Hence any shell model nuclear hwmiltonian which has an SO 8 n y«,

AN

pairs only. The most gioneral siell molel Hamiltonian of this forw wil! have

dynamicnl symmetry will have s subspace >f eigenstates conlilting of £
zonopole and quadrupole pairing and multipole interactions:

H = uos*s + 0207-D s 1 W (Pge) g0 (1.4)
r=1,2,3



v 3 ot T(t),.r(t) + 3 a(r)(Tsr) LR 4 q(0) Tir))

t dd 'k 'k’ k r=1,3 k
vhere GO<G° and x(r), uir), and vﬁfz are the strengths of the multipole inter-

actions.

The eigenstates of this Hamiltonian will be labeled by the quantum number
u. Those with u=0 will correspond to the IBM states and those with u=1 will
correspond to the IBFM states. However all shell model states will appear;
the remaining states will have a higher value of u.

The group SOB has three subgroups chains which have the total pseudo-spin
as an SO3 subgroup. For values of the parameters of the Humiltonizn waich
conserve the symmetry of these subgroups, the eigenenergies of the Hamiltonien

cap be given in closed form.

The {irat symmetry rourresponds to subgroup chain
S0g :)so5 @ su,Ds0, . (3.5)

In this chain the SO5 group is the symmetry group of the quadrupole oscil-
lator, SU2 is the well known quasi-spin group of pairing7), and SO3 is the
pseudo-spin rotstional group. For u=0 states the total pseudo-orbital sogular
momernitum is zero and bence the total angular momentum equals the total pseudo-

(2)_
2

spin, J=1. This symmetry o-<curs for « and the excited energy eigen-

values fo. u=0 are given by

Eq(v,1,) = EEE%EQEV(ZQ-V+2)+(K(a)-Gz)t(r+3)+%(x(l)-x(3))J(J+l) :
(3.6)
The quantum number v is the usual leniority,E)
v=np, n-2, ..., 0, 3.7
T is the 505 qQuantum number,
T= v, hv-2, ..., Oorl (3.8)

aud J is the angular momentus with allowed values determined by partitiouning
T,
Te 3p + A 3.9

where p, A are non-negative integere, and then

J= A, A+1, ..., 2A-2, 2A . (3.10)

This spectrum ic that of an anharmonic quadrupole owcillator with the energy



spacing b2lween levels almost linear in v with anharmonicity from the Pauli
principle coming in naturally. Thio symmstry ian the SO8 model corresponds te

the SU5 svametry in the IBM.

Another group chain is
S0 NS0, D S0, DSo, (3.11)

and occurs for the pairing strength GO=GZ' The eigrnspectrum for u=) is then

E, (0,1,3) = @) 6y) (0-N) (a¥Nsw) + @k Dy (143)

+ % (x(l) —K(3))J(J+1) (3.12)

where N = 4n is the number of pairs of valence ruclevns, O is Che SOb quanium

uumber,
g= N, N-2, ... 0 ov 1 (3.13)
and the allowed values of 1 are

1=0,0-1, ..., 0, (3.14)

and the sllowed values of the angular moamentum J are the sam=~ as in (3.9) and
(3.10). This symmetry corresponds to a y-unstable rotor snd alto correepnnds
to the SO6 limit ot the IBM.
The final group chain is
S .
s0g O 89, D 50, D 80, (3.15)

sad occurs for K(‘) = GO. The eigenspectrum for u=0 is given by

Ey(3,7,9) = (6,°6,) § (20-2n+7410) + (-6, t(1+3)
+ 2o B304 (3.16)

This rymmetry corresponds to a8 repulsive quadrvpole pairiig interaction. The

quantum number v has Lhe ssme allowed values as seniority v,

v e n, n-2, ... , 0 (2.17)

rnd the all~wed values of ¢ are,



T=hv, §v-2, ..., 0or 1 (3.18)

and the allowed values of J are the same as in (3.9, and (3.10). The spectrum
for a given valerce number is that .t a anharmonic quadrupole oscillator like

the pairing 1imit, but unlike the pairing limit the spacing betwcen levels

decrcases #3 the number of valence nucleons increnles.3)

Tor the genersl Humiltoninn in which non: ~f these three symmetries prevail
the specirum will depend on the relative ..rength of the pairipng interaction
and the quadrupole inteyacticn. Howevezr it is clear from these soivable
limit= that a wide variety of spectra canm occur in this model.

For the allowed representations of SO8 and 506 for st«tes with u>0, see
Reference 3.

An application to the Samarium isotopes in which neutrona and protons wvere

distinguished was successfully carried out in Reforence 8.
4. THE Sp6 MODEL

Just as in the case of the SO8 model, all the states in thls space can be
classified according to irreducible representations of the Sp6 group, and the
quantum oumber u which is the number of nucleons not in the special oonopole
or qurdrupole pair. However unlike the SOB model the aumber of states for
v=0 are nc¢' 1v one-to-one . rrespondence with the IBHS). The uumber of u=0
sta.es wil]l be less than the number of IBM states becsuse of the Pauli prin-
ciple. For this reason, which may be unjustified, this model was not studied
st much as the SOB model. Hovever irhere has been reccnt renewed interest in
this nodel‘).

The monopole pair creation operator, ST, and quadrupole pair creation
operator, D:, p=2,1,0,-1,-2, cre given by applyiog (2.2} and (2.4)

st = \fl3(21+1)1" al, 18002 (4.20)
t M ot 1 ,(29)2 -
bu - ?1(3(21+1)1 TN : (4.2b)

These pair creation operators and their hermitian conjugates, plus the multi-

pole operstors with total pseudo-spin rank equal to zaro,

](r,O)r; r=0,1,2 (4.2¢)

R "'fla(zm)l" QN

are the jcnerators of the Sp6 group.') In particular the pmoudo-orbital

angulny momeat.m op.orator 18



K = -2(2/3)% ip“) (4.2d)

In addition to these operators, the multipole operators

108 = aseene] 5, 109 ¢ o (4.3)

T' ﬁT, f(r)

Hence any shell model Hamiltonian which has an Sp6 e nsz.+1 dynamical

1'.

symeetry will have a subspace of eigenstates consisting of S , D' pairs only.

The most general shell model Hamiltonian of this form will have monopole and

commute with S and generate an Sp2i+1 group.

quadrupole pairing and multipole interactions:

N = cos*s + czﬁT-ﬁ + 3 kM. 6 (4.4)
r=1,2

(t) =(t), =(v) =(1) ., z(1) , z(1) |, =(1)
’tiédg":'i‘i' T *f“i(Ti ROZ+R LN

(v)
i'i

where G.<G., and K(r)
c 2

'y a5 auy Vv are the strerngths of the multipole inter-
actions.

The eigenstates of this Hamiltonian will be labeled by the quantum number
u. Those wvith u=0 will correspond to a subset of the IBM states and those
with n=1 will correspond to a subset of the IBFM states. However all shell
model states will appesr; the remaining states will have s highker value of u.

The group Sp6 has two subgroups chains which have the total pseudo-orbital
sngular momentum as an SO3 subgroup. For values of the parameters of the
Hamiltonian which conserve the symmetry of these subgroups, the eigenenergies
of the Hsualtonian can be given in clused form.

The first symmetry corresponds to subgroup chain

Sp D) 50, @ SU,DS0, . (4.5)

In t!.is chaio SU, is the well known quasi-spin group of pliring7), and SO, is

2 3
the pseudo-orbital angulsr momentum group. For n=0 states the pscudo-spin is
equal to zero and kence the total sngular momentum cquals the total pseudo-
orbital angular momentum. This symmetry occurs for K(2)=G2 and the excited

energy eigenvalues for u=0 are given by

(6,-G,)
£,,3) = 228 van-w2) + 3D - 6 a0 (4.6)



5)

The quantum number v is the usual seniority,

v=n, n2, ..., 0, 4.7)

and J is the angular momentum. This spectrum is that of an anharmonic oscil-
lator with the energy spacing between levels almost linear in v with an-
harmonicity from the Pauli principle comiuz in naturally. This symmetry in
the Sp6 model corresponds partially to the SU5 syrmetry in the IBM. Since Sp6
has nc SO5 subgroup, there Is pno T quantum number as in the SO8 oodel. The
IBM does have an 505 subgroup and it is for thia reason that there is no
one-to-one correspondence between the Sp6 model and the IBM.

Another group chaiu is

596 3503 3503 (4.8)
and occurs for the pairing strength GoﬁGz. We use the fact that the SU3
Casimir operatcr is

€j=2 % R R (4.9)

r=1,2
The eigenspectrum for u=0 is then
* - (2
E (A1) = (K277=G,) [(A-2N) (A+2N+3) tp (A+p+3) ]
T2
+ 3 @Dy, (6.10)

whare N = ko is the number of pairs of valence nucleons, and (A,H) are the
SU3 qQuantum numbers. The allowed values of J for a given representation
follow the same rules as in the IBH.’) This symmetry corresponds to an axis'-
ly symmet-ic rotor.

5.1 THE SU3 GROUND STATE BAND

All the statcs in the SU3 representation (A,pu) = (2N,0) which will corres-
poad to the ground state band for ap sxlally symmetric rotor can be projected
froo an intrinsic state composed of N intrinsic pairs of nucleons. These
antrionic pairs create tso nucleons with pseudo-orbital angular moxentum

projection zero, but total pseudo-spin zero.



1

= . T 1 (0) -
AT ¥ [3(21+1)] Y {2)0,:%0;1) . G.1)
—5—
where the {} coupling is for pseudo-epin only. Hence this pair does not have
a definite pseudo-orbital angular momentum.

For NS/2, i.e. the half-filled shell, the SU_., eigenstates will be

3
projected from this intrinsic pair condensate,

| (2N,0)K,M;1 = 0> = g%z%gi [ dw Dég)(w)RK(w)(AT)N10> (5.2a)

(K)

vhere DMh.(w) is the Wigner D~function°)

, Ware the Euler angles, RK(w) is a

pseudo-orbital engular momentum rotation, and nNK is the normalization

"k = BaxPw : (5.2b)

vhere BNK is the IBM normalization

T 2N) IN! \ 5.20)
Bk ZRTK+ 1) T (ZR-K) 11 ' '
PN is the Pauli correction factor
(%‘1)' : ( )
P |2 5.2d
N GwrHN?
L

and |0> is the core.

For N > g the SU3 representation (2§,0) with N = O-N will be lowest in

energy and is projected from an intrinaic state of N instrimsic pairs of
nucleon holes. The vacuum |0>+|5>, the closed shell, and N+N in the formulae
(5.2).

From (5.2d) we see that PN =0 for N> g. Hence in this case the (2N,0)
representation vanishes because of the Pauli priaciple. Likewise (2N,0)
vanishes for N > g. Thus these lowest SU, representations do not exist in

3
the Sp6 model for

<p (5.3)

Wi

This is sn exsmple of states which do not exist in the Sp6 because of the
Pauli principle but do exist in the IBM. This may not be & defect; only by
comparison with data cun we judge whether this is a vulid effect which exista
in nuclei.10)



5.2 THE SU3 EXCITED BANDS

We can define an excited u=2 band by replacing one of the pairs in (5.2a)
by an intrinsic pair with pseudc-spin I#0

t_ 1. 13(2i+1) ) % M
Aty = Ef l a ] (2)0:1%10;1 )y (5.4)

Because of aptisymmetry, I must of course be even. The u=2 states with SU3

symmetry are projected from an intrinsic state with N-1 I=0 pairu (5.1) and
one pair with I#0:

L2, 00K, M; T, > = E-Idw pE) wymy (w) (aT)¥* 1] ,10> (5.5)
n’ K1
where
%’N Y (1+g-1212
k1T o, | T 2 ' (-6
3

Hence we see that, as long as I is even but lsrger than zero, the normsliza-
tion is independent of I. Furthermore we see tbat this SU3 band does not

exist for u=2 for

0 20
ESNST (5.7)
which is more restrictive than for the u=0 states as shown by (5.3).
The SU3 representation (2N,0) given in (5.5) occure for many bands,
1=24 -1, 24 -3, ..., ¢ (5.8)

nax max

where imax is the maximum pseudc-spin in the system.
These excited bands are important in understanding backbending in nuclear
high " 7in states.10)

5.3 STRONGLY COUPLZD u=2 BAND

In the u=2 bands described by (5.5), the pseudo-spin {s not part of the

collective rotational moton. We can define a strongly coupled band by rota-



ting the pseudo-orbital angular momentum and pseudo-spin together:

1(2N.0)1; > = .Jggii_;dm 0D wrwat  whH¥ e (5.9a)
8n My1y MO I,p=0 .

vhere

J1IK,2

- y
M1y = §(2K+1)(o 0 o) "le

(5.9b)

In the above the rotation R(1) scts on both pseudo-orbital snguler momentum
and pseudo-spin.

5.4 TRANSITION RATES

For the quadrupole transitions bLetween u=0 states, the quadrupole operator
will be proportional to the quadrupole operator which is a wcalar with respect
to pseudo-spin; i.e. the opertrtor ﬁ 2) given in (4.2¢). The matrix elements
of these operators are the same as Luone given by the SU3 limit of the IBH‘)
This must be so because in both cases the quadrupole operator is a generator
of the SU3 group and hence the matrix elements will depend only on the SU

quantum oumber. ?
5.5 PAIRING ENERGY
The pairing binding energy in the u=0 lowest SU3 band 1is
<(2¥,0)K,M; I=0|s's| (2N,0)K,; In0>
(3-N+1) (2N-K) (2N+K+1)
= 2(3N-1) ‘ (5.10a)

As the sngular momentum, J=K, increases, this binding energy decresses. For
the uv0 band the pairing is less which makes these bands higher in energy for
the same X:

<(2X,0)K,4;1v0,p8'8 (2§,0)K,M; 100, >

n
N)
« (8°1 'n——'r <(2N,0)K,4; 1m018 181 (28,0)K ; 1e0> . (5.100)
S—N*I)



Rowever for a given total angular momentum J, where of course J:cI+K,I“K-1,

, |I-K], if more angular momentum is put Into the pseudo-spin, I, aad
less iptn the pseudo-orbital sngulsr momentum K, the pairing binding energy
for tha: state vwill increase. Henre for some J, the stzte with I#0 may become
lowver in energy. Thus the Yras. level will be irc snother band leadiag to a
different wmoment of inertia for the Yrast band.1®)  0f course this effect,
which occurs naturally ia this model, is outside the scope of the pure IBM
since it deals only with the u=0 band. Additionsl qQussi-psrticle states must
be introdured into the 14.11
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